Search results
Results From The WOW.Com Content Network
If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.
To prove proposition 29 assuming Playfair's axiom, let a transversal cross two parallel lines and suppose that the alternate interior angles are not equal. Draw a third line through the point where the transversal crosses the first line, but with an angle equal to the angle the transversal makes with the second line.
Antecedent of Playfair's axiom: a line and a point not on the line Consequent of Playfair's axiom: a second line, parallel to the first, passing through the point. In geometry, Playfair's axiom is an axiom that can be used instead of the fifth postulate of Euclid (the parallel postulate):
The existence of parallel lines leads to establishing a point at infinity which represents the intersection of these parallels. This axiomatic symmetry grew out of a study of graphical perspective where a parallel projection arises as a central projection where the center C is a point at infinity, or figurative point . [ 5 ]
The de Longchamps point is the point of concurrence of several lines with the Euler line. Three lines, each formed by drawing an external equilateral triangle on one of the sides of a given triangle and connecting the new vertex to the original triangle's opposite vertex, are concurrent at a point called the first isogonal center.
Convergence of parallel lines can refer to: In everyday life, the vanishing point phenomenon; Non-Euclidean geometry in which Euclid's parallel postulate does not hold
The distance between two parallel lines in the plane is the minimum distance between any two points. Formula and proof. Because the lines are parallel, the ...
In complex analysis, a branch of mathematics, the Hadamard three-line theorem is a result about the behaviour of holomorphic functions defined in regions bounded by parallel lines in the complex plane. The theorem is named after the French mathematician Jacques Hadamard.