Search results
Results From The WOW.Com Content Network
Iron(III) chloride forms a 1:2 adduct with Lewis bases such as triphenylphosphine oxide; e.g., FeCl 3 (OP(C 6 H 5) 3) 2. The related 1:2 complex FeCl 3 (OEt 2) 2, where Et = C 2 H 5), has been crystallized from ether solution. [14] Iron(III) chloride also reacts with tetraethylammonium chloride to give the yellow salt of the tetrachloroferrate ...
Potassium ferrioxalate contains the iron(III) complex [Fe(C 2 O 4) 3] 3−. In chemistry, iron(III) or ferric refers to the element iron in its +3 oxidation state. Ferric chloride is an alternative name for iron(III) chloride (FeCl 3). The adjective ferrous is used instead for iron(II) salts, containing the cation Fe 2+.
Iron(II) chloride tetrahydrate, FeCl 2 ·4H 2 O. In chemistry, iron(II) refers to the element iron in its +2 oxidation state. The adjective ferrous or the prefix ferro-is often used to specify such compounds, as in ferrous chloride for iron(II) chloride (FeCl 2). The adjective ferric is used instead for iron(III) salts, containing the cation Fe 3+.
For example, FeSO 4 is named iron(2+) sulfate (with the 2+ charge on the Fe 2+ ions balancing the 2− charge on the sulfate ion), whereas Fe 2 (SO 4) 3 is named iron(3+) sulfate (because the two iron ions in each formula unit each have a charge of 3+, to balance the 2− on each of the three sulfate ions). [108]
The iron compounds produced on the largest scale in industry are iron(II) sulfate (FeSO 4 ·7H 2 O) and iron(III) chloride (FeCl 3). The former is one of the most readily available sources of iron(II), but is less stable to aerial oxidation than Mohr's salt ((NH 4) 2 Fe(SO 4) 2 ·6H 2 O). Iron(II) compounds tend to be oxidized to iron(III ...
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
For example, in an aqueous solution of sodium chloride, less than half of the current is carried by the positively charged sodium ions (cations) and more than half is carried by the negatively charged chloride ions (anions) because the chloride ions are able to move faster, i.e., chloride ions have higher mobility than sodium ions. The sum of ...