When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    This equation, stated by Euler in 1758, [2] is known as Euler's polyhedron formula. [3] It corresponds to the Euler characteristic of the sphere (i.e. = ), and applies identically to spherical polyhedra. An illustration of the formula on all Platonic polyhedra is given below.

  3. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.

  4. Polyhedral combinatorics - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_combinatorics

    From the fact that each facet of a three-dimensional polyhedron has at least three edges, it follows by double counting that 2e ≥ 3f, and using this inequality to eliminate e and f from Euler's formula leads to the further inequalities e ≤ 3v − 6 and f ≤ 2v − 4. By duality, e ≤ 3f − 6 and v ≤ 2f − 4.

  5. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.

  6. Riemann–Hurwitz formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–Hurwitz_formula

    Now let us choose triangulations of S and S′ with vertices at the branch and ramification points, respectively, and use these to compute the Euler characteristics. Then S′ will have the same number of d-dimensional faces for d different from zero, but fewer than expected vertices. Therefore, we find a "corrected" formula

  7. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    Euler's formula states that if a finite, connected, planar graph is drawn in the plane without any edge intersections, and v is the number of vertices, e is the number of edges and f is the number of faces (regions bounded by edges, including the outer, infinitely large region), then

  8. Euler operator (digital geometry) - Wikipedia

    en.wikipedia.org/wiki/Euler_operator_(digital...

    Let the number of vertices be V, edges be E, faces be F, components H, shells S, and let the genus be G (S and G correspond to the b 0 and b 2 Betti numbers respectively). Then, to denote a meaningful geometric object, the mesh must satisfy the generalized Euler–Poincaré formula. V – E + F = H + 2 * (S – G) The Euler operators preserve ...

  9. Simplicial sphere - Wikipedia

    en.wikipedia.org/wiki/Simplicial_sphere

    It follows from Euler's formula that any simplicial 2-sphere with n vertices has 3n − 6 edges and 2n − 4 faces. The case of n = 4 is realized by the tetrahedron. By repeatedly performing the barycentric subdivision, it is easy to construct a simplicial sphere for any n ≥ 4.