Search results
Results From The WOW.Com Content Network
It is the straight line through the point at which the force is applied, and is in the same direction as the vector F →. [1] [2] The concept is essential, for instance, for understanding the net effect of multiple forces applied to a body. For example, if two forces of equal magnitude act upon a rigid body along the same line of action but in ...
The component of the force parallel to the motion, or equivalently, perpendicular to the line connecting the point of application to the axis is . The sum is over j {\displaystyle j} from 1 {\displaystyle 1} to N {\displaystyle N} particles and/or points of application.
Suppose two forces act on a particle at the origin (the "tails" of the vectors) of Figure 1.Let the lengths of the vectors F 1 and F 2 represent the velocities the two forces could produce in the particle by acting for a given time, and let the direction of each represent the direction in which they act.
The force and torque vectors that arise in applying Newton's laws to a rigid body can be assembled into a screw called a wrench. A force has a point of application and a line of action, therefore it defines the Plücker coordinates of a line in space and has zero pitch. A torque, on the other hand, is a pure moment that is not bound to a line ...
A single force acting at any point O′ of a rigid body can be replaced by an equal and parallel force F acting at any given point O and a couple with forces parallel to F whose moment is M = Fd, d being the separation of O and O′. Conversely, a couple and a force in the plane of the couple can be replaced by a single force, appropriately ...
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
The static friction force will exactly oppose forces applied to an object parallel to a surface up to the limit specified by the coefficient of static friction multiplied by the normal force (). In other words, the magnitude of the static friction force satisfies the inequality: 0 ≤ F s f ≤ μ s f F N . {\displaystyle 0\leq \mathbf {F ...
The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.