Search results
Results From The WOW.Com Content Network
Hydrobromic acid is an aqueous solution of hydrogen bromide.It is a strong acid formed by dissolving the diatomic molecule hydrogen bromide (HBr) in water. "Constant boiling" hydrobromic acid is an aqueous solution that distills at 124.3 °C (255.7 °F) and contains 47.6% HBr by mass, which is 8.77 mol/L. Hydrobromic acid is one of the strongest mineral acids known.
Strong electrolytes conduct electricity only in aqueous solutions, or in molten salt, and ionic liquid. Strong electrolytes break apart into ions completely. The strength of an electrolyte does not affect the open circuit voltage produced by a galvanic cell. But when electric current flows, stronger electrolytes result in smaller voltage losses ...
Typical weak electrolytes are weak acids and weak bases. The concentration of ions in a solution of a weak electrolyte is less than the concentration of the electrolyte itself. For acids and bases the concentrations can be calculated when the value or values of the acid dissociation constant are known.
The ability for ions to move freely through the solvent is a characteristic of an aqueous strong electrolyte solution. The solutes in a weak electrolyte solution are present as ions, but only in a small amount. [3] Nonelectrolytes are substances that dissolve in water yet maintain their molecular integrity (do not dissociate into ions).
For strong electrolytes, such as salts, strong acids and strong bases, the molar conductivity depends only weakly on concentration. On dilution there is a regular increase in the molar conductivity of strong electrolyte, due to the decrease in solute–solute interaction. Based on experimental data Friedrich Kohlrausch (around the year 1900 ...
The first term on the right-hand side is the Debye–Hückel term, with a constant, A, and the ionic strength I. β is an interaction coefficient and b the molality of the electrolyte. As the concentration decreases so the second term becomes less important until, at very low concentrations, the Debye-Hückel equation gives a satisfactory ...
Weak electrolytes. A weak electrolyte is one that is not fully dissociated. As such it has a dissociation constant. The dissociation constant can be used to calculate the extent of dissociation and hence, make the necessary correction needed to calculate activity coefficients. [17] Ions are spherical, not point charges and are not polarized.
Most electrolyte imbalances are adequately treated by ORS. For example, a child who has been given an excess of sugar or salt like that which is in commercial soft drinks, sugared fruit drinks, or over-concentrated infant formula, may develop hypernatraemic dehydration.