Search results
Results From The WOW.Com Content Network
The Sorgenfrey line can thus be used to study right-sided limits: if : is a function, then the ordinary right-sided limit of at (when the codomain carries the standard topology) is the same as the usual limit of at when the domain is equipped with the lower limit topology and the codomain carries the standard topology.
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property.
Every compact space is σ-compact, and every σ-compact space is Lindelöf (i.e. every open cover has a countable subcover). [4] The reverse implications do not hold, for example, standard Euclidean space (R n) is σ-compact but not compact, [5] and the lower limit topology on the real line is Lindelöf but not σ-compact. [6]
Continuum (topology) Extended real number line; Long line (topology) Sierpinski space; Cantor set, Cantor space, Cantor cube; Space-filling curve; Topologist's sine curve; Uniform norm; Weak topology; Strong topology; Hilbert cube; Lower limit topology; Sorgenfrey plane; Real tree; Compact-open topology; Zariski topology; Kuratowski closure ...
the lower limit topology or upper limit topology on the set R of real numbers (useful in the study of one-sided limits); any T 0, hence Hausdorff, topological vector space that is infinite-dimensional, such as an infinite-dimensional Hilbert space.
Let (,) be a metric space, where is a given set. For any point and any non-empty subset , define the distance between the point and the subset: (,):= (,),.For any sequence of subsets {} = of , the Kuratowski limit inferior (or lower closed limit) of as ; is := {:,} = {: (,) =}; the Kuratowski limit superior (or upper closed limit) of as ; is := {:,} = {: (,) =}; If the Kuratowski limits ...
For an ordered space (X, <) (i.e. a totally ordered set equipped with the order topology), the following are equivalent: (X, <) is compact. Every subset of X has a supremum (i.e. a least upper bound) in X. Every subset of X has an infimum (i.e. a greatest lower bound) in X. Every nonempty closed subset of X has a maximum and a minimum element.
Equivariant topology; Erdős space; List of examples in general topology; ... Long line (topology) Loop space; Lower limit topology; M. Menger sponge; Metric space;