Search results
Results From The WOW.Com Content Network
The n th term describes the length of the n th run ... At each stage an alternating sequence of 1s and 0s is inserted between the terms of the previous sequence.
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.
The sequence 0, 3, 8, 15, ... is formed according to the formula n 2 − 1 for the nth term: an explicit definition. Alternatively, an integer sequence may be defined by a property which members of the sequence possess and other integers do not possess. For example, we can determine whether a given integer is a perfect number, (sequence A000396 ...
In words, the sequence of Pell numbers starts with 0 and 1, and then each Pell number is the sum of twice the previous Pell number, plus the Pell number before that. The first few terms of the sequence are 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, … (sequence A000129 in the OEIS).
Find recurrence relations for sequences—the form of a generating function may suggest a recurrence formula. Find relationships between sequences—if the generating functions of two sequences have a similar form, then the sequences themselves may be related. Explore the asymptotic behaviour of sequences. Prove identities involving sequences.
The Padovan sequence numbers can be written in terms of powers of the roots of the equation [1] = This equation has 3 roots; one real root p (known as the plastic ratio) and two complex conjugate roots q and r. [5] Given these three roots, the Padovan sequence can be expressed by a formula involving p, q and r :
For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is and the common difference of successive members is , then the -th term of the sequence is given by
Michael Stifel published the following method in 1544. [3] [4] Consider the sequence of mixed numbers,,,, … with = + +.To calculate a Pythagorean triple, take any term of this sequence and convert it to an improper fraction (for mixed number , the corresponding improper fraction is ).