When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rocket engine nozzle - Wikipedia

    en.wikipedia.org/wiki/Rocket_engine_nozzle

    Figure 1: A de Laval nozzle, showing approximate flow velocity increasing from green to red in the direction of flow Density flow in a nozzle. A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.

  3. Rocket engine - Wikipedia

    en.wikipedia.org/wiki/Rocket_engine

    Typical temperature (T), pressure (p), and velocity (v) profiles in a de Laval Nozzle. For a rocket engine to be propellant efficient, it is important that the maximum pressures possible be created on the walls of the chamber and nozzle by a specific amount of propellant; as this is the source of the thrust. This can be achieved by all of:

  4. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    For a rocket, the specific impulse defined in this way is simply the effective exhaust velocity relative to the rocket, v e. "In actual rocket nozzles, the exhaust velocity is not really uniform over the entire exit cross section and such velocity profiles are difficult to measure accurately. A uniform axial velocity, v e, is assumed for all ...

  5. Characteristic velocity - Wikipedia

    en.wikipedia.org/wiki/Characteristic_velocity

    Characteristic velocity or , or C-star is a measure of the combustion performance of a rocket engine independent of nozzle performance, and is used to compare different propellants and propulsion systems. c* should not be confused with c, which is the effective exhaust velocity related to the specific impulse by: =. Specific impulse and ...

  6. de Laval nozzle - Wikipedia

    en.wikipedia.org/wiki/De_Laval_nozzle

    A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .

  7. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  8. New Vulcan rocket takes off on second test flight - AOL

    www.aol.com/vulcan-rocket-takes-off-second...

    The Vulcan's two Blue Origin-built BE-4 engines and twin solid rocket boosters, or SRBs, thundered to life at 7:25 a.m. EDT, shattering the morning calm with the crackling roar of 2 million pounds ...

  9. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    A nozzle for a supersonic flow must increase in area in the flow direction, and a diffuser must decrease in area, opposite to a nozzle and diffuser for a subsonic flow. So, for a supersonic flow to develop from a reservoir where the velocity is zero, the subsonic flow must first accelerate through a converging area to a throat, followed by ...