When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Statistical distance - Wikipedia

    en.wikipedia.org/wiki/Statistical_distance

    In statistics, probability theory, and information theory, a statistical distance quantifies the distance between two statistical objects, which can be two random variables, or two probability distributions or samples, or the distance can be between an individual sample point and a population or a wider sample of points. A distance between ...

  3. Total variation distance of probability measures - Wikipedia

    en.wikipedia.org/wiki/Total_variation_distance...

    and when the distributions have standard probability density functions p and q, [5] (,) = | () | (or the analogous distance between Radon-Nikodym derivatives with any common dominating measure). This result can be shown by noticing that the supremum in the definition is achieved exactly at the set where one distribution dominates the other.

  4. Integral probability metric - Wikipedia

    en.wikipedia.org/wiki/Integral_probability_metric

    In probability theory, integral probability metrics are types of distance functions between probability distributions, defined by how well a class of functions can distinguish the two distributions. Many important statistical distances are integral probability metrics, including the Wasserstein-1 distance and the total variation distance .

  5. Fisher information metric - Wikipedia

    en.wikipedia.org/wiki/Fisher_information_metric

    In information geometry, the Fisher information metric [1] is a particular Riemannian metric which can be defined on a smooth statistical manifold, i.e., a smooth manifold whose points are probability distributions. It can be used to calculate the distance between probability distributions. [2] The metric is interesting in several aspects.

  6. Divergence (statistics) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(statistics)

    In information geometry, a divergence is a kind of statistical distance: a binary function which establishes the separation from one probability distribution to another on a statistical manifold. The simplest divergence is squared Euclidean distance (SED), and divergences can be viewed as generalizations of SED.

  7. Wasserstein metric - Wikipedia

    en.wikipedia.org/wiki/Wasserstein_metric

    In computer science, for example, the metric W 1 is widely used to compare discrete distributions, e.g. the color histograms of two digital images; see earth mover's distance for more details. In their paper ' Wasserstein GAN ', Arjovsky et al. [ 5 ] use the Wasserstein-1 metric as a way to improve the original framework of generative ...

  8. Hellinger distance - Wikipedia

    en.wikipedia.org/wiki/Hellinger_distance

    In probability and statistics, the Hellinger distance (closely related to, although different from, the Bhattacharyya distance) is used to quantify the similarity between two probability distributions. It is a type of f-divergence. The Hellinger distance is defined in terms of the Hellinger integral, which was introduced by Ernst Hellinger in 1909.

  9. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Birnbaum–Saunders distribution, also known as the fatigue life distribution, is a probability distribution used extensively in reliability applications to model failure times. The chi distribution. The noncentral chi distribution; The chi-squared distribution, which is the sum of the squares of n independent Gaussian random variables.