When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Homology (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Homology_(mathematics)

    In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages.The most direct usage of the term is to take the homology of a chain complex, resulting in a sequence of abelian groups called homology groups.

  3. Cellular homology - Wikipedia

    en.wikipedia.org/wiki/Cellular_homology

    Cellular homology can also be used to calculate the homology of the genus g surface. The fundamental polygon of Σ g {\displaystyle \Sigma _{g}} is a 4 n {\displaystyle 4n} -gon which gives Σ g {\displaystyle \Sigma _{g}} a CW-structure with one 2-cell, 2 n {\displaystyle 2n} 1-cells, and one 0-cell.

  4. Homological algebra - Wikipedia

    en.wikipedia.org/wiki/Homological_algebra

    Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology ) and abstract algebra (theory of modules and syzygies ) at the end of the 19th century, chiefly by ...

  5. Relative homology - Wikipedia

    en.wikipedia.org/wiki/Relative_homology

    In algebraic topology, a branch of mathematics, the (singular) homology of a topological space relative to a subspace is a construction in singular homology, for pairs of spaces. The relative homology is useful and important in several ways. Intuitively, it helps determine what part of an absolute homology group comes from which subspace.

  6. Exact sequence - Wikipedia

    en.wikipedia.org/wiki/Exact_sequence

    If we take a series of short exact sequences linked by chain complexes (that is, a short exact sequence of chain complexes, or from another point of view, a chain complex of short exact sequences), then we can derive from this a long exact sequence (that is, an exact sequence indexed by the natural numbers) on homology by application of the zig ...

  7. Graph homology - Wikipedia

    en.wikipedia.org/wiki/Graph_homology

    C 1 is the free abelian group generated by the set of directed edges {a,b,c,d}. Each element of C 1 is called a 1-dimensional chain. The three cycles mentioned above are 1-dimensional chains, and indeed the relation (a+b+d) + (c-d) = (a+b+c) holds in the group C 1. Most elements of C 1 are not

  8. Mayer–Vietoris sequence - Wikipedia

    en.wikipedia.org/wiki/Mayer–Vietoris_sequence

    Let X be a topological space and A, B be two subspaces whose interiors cover X. (The interiors of A and B need not be disjoint.) The Mayer–Vietoris sequence in singular homology for the triad (X, A, B) is a long exact sequence relating the singular homology groups (with coefficient group the integers Z) of the spaces X, A, B, and the intersection A∩B. [8]

  9. Künneth theorem - Wikipedia

    en.wikipedia.org/wiki/Künneth_theorem

    In general one uses singular homology; but if X and Y happen to be CW complexes, then this can be replaced by cellular homology, because that is isomorphic to singular homology. The simplest case is when the coefficient ring for homology is a field F. In this situation, the Künneth theorem (for singular homology) states that for any integer k,