Ad
related to: electrical potential energy examples pictures for kids
Search results
Results From The WOW.Com Content Network
The electrostatic potential energy of a system of three charges should not be confused with the electrostatic potential energy of Q 1 due to two charges Q 2 and Q 3, because the latter doesn't include the electrostatic potential energy of the system of the two charges Q 2 and Q 3.
In short, an electric potential is the electric potential energy per unit charge. This value can be calculated in either a static (time-invariant) or a dynamic (time-varying) electric field at a specific time with the unit joules per coulomb (J⋅C −1) or volt (V). The electric potential at infinity is assumed to be zero.
There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...
Electrical energy is energy related to forces on electrically charged particles and the movement of those particles (often electrons in wires, but not always). This energy is supplied by the combination of current and electric potential (often referred to as voltage because electric potential is measured in volts) that is delivered by a circuit (e.g., provided by an electric power utility).
Electric power transmission is the bulk transfer of electrical energy, a process in the delivery of electricity to consumers More selected pictures. Picture 28.
This page was last edited on 19 September 2023, at 23:35 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The electric potential is the same everywhere inside the conductor and is constant across the surface of the conductor. This follows from the first statement because the field is zero everywhere inside the conductor and therefore the potential is constant within the conductor too. The electric field is perpendicular to the surface of a conductor.
The electric field was formally defined as the force exerted per unit charge, but the concept of potential allows for a more useful and equivalent definition: the electric field is the local gradient of the electric potential. Usually expressed in volts per metre, the vector direction of the field is the line of greatest slope of potential, and ...