Search results
Results From The WOW.Com Content Network
It is also known as the lower quartile. The second quartile (Q 2) is the median of a data set; thus 50% of the data lies below this point. The third quartile (Q 3) is the 75th percentile where lowest 75% data is below this point. It is known as the upper quartile, as 75% of the data lies below this point. [1]
The lower quartile corresponds with the 25th percentile and the upper quartile corresponds with the 75th percentile, so IQR = Q 3 − Q 1 [1]. The IQR is an example of a trimmed estimator , defined as the 25% trimmed range , which enhances the accuracy of dataset statistics by dropping lower contribution, outlying points. [ 5 ]
Splitting the observations either side of the median gives two groups of four observations. The median of the first group is the lower or first quartile, and is equal to (0 + 1)/2 = 0.5. The median of the second group is the upper or third quartile, and is equal to (27 + 61)/2 = 44. The smallest and largest observations are 0 and 63.
The 4-quantiles are called quartiles → Q; the difference between upper and lower quartiles is also called the interquartile range, midspread or middle fifty → IQR = Q 3 − Q 1. The 5-quantiles are called quintiles or pentiles → QU; The 6-quantiles are called sextiles → S; The 7-quantiles are called septiles → SP; The 8-quantiles are ...
Third quartile (Q 3 or 75th percentile): also known as the upper quartile q n (0.75), it is the median of the upper half of the dataset. [ 7 ] In addition to the minimum and maximum values used to construct a box-plot, another important element that can also be employed to obtain a box-plot is the interquartile range (IQR), as denoted below:
The third quartile (3) is defined as the middle value halfway between the median and the largest value (maximum) of the dataset, such that 75 percent of the data lies below this quartile. Because the data must be ordered from smallest to largest in order to compute them, quartiles are a type of order statistic.
The two are complementary in sense that if one knows the midhinge and the IQR, one can find the first and third quartiles. The use of the term hinge for the lower or upper quartiles derives from John Tukey 's work on exploratory data analysis in the late 1970s, [ 1 ] and midhinge is a fairly modern term dating from around that time.
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.