Search results
Results From The WOW.Com Content Network
Conversely, each Fibonacci Box corresponds to a unique and primitive Pythagorean triple. In this section we shall use the Fibonacci Box in place of the primitive triple it represents. An infinite ternary tree containing all primitive Pythagorean triples/Fibonacci Boxes can be constructed by the following procedure. [10]
This approach relies on the standard formula for generating any primitive Pythagorean triple from a half-angle tangent. Specifically one writes t = n / m = b / (a + c), where t is the tangent of half of the interior angle that is opposite to the side of length b. The root node of the tree is t = 1/2, which is for the primitive Pythagorean ...
A triangle whose side lengths are a Pythagorean triple is a right triangle and called a Pythagorean triangle. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not.
Two infinite ternary trees containing all primitive Pythagorean triples are described in Tree of primitive Pythagorean triples and in Formulas for generating Pythagorean triples. The root node in both trees contains triple [3,4,5]. [2]
[4] [6] The first three of these define the primitive Pythagorean triples (the ones in which the two sides and hypotenuse have no common factor), derive the standard formula for generating all primitive Pythagorean triples, compute the inradius of Pythagorean triangles, and construct all triangles with sides of length at most 100. [6]
If a right triangle has integer side lengths a, b, c (necessarily satisfying the Pythagorean theorem a 2 + b 2 = c 2), then (a,b,c) is known as a Pythagorean triple. As Martin (1875) describes, the Pell numbers can be used to form Pythagorean triples in which a and b are one unit apart, corresponding to right triangles that are nearly isosceles.
English: A depiction of all the primitive Pythagorean triples (a,b,c) with a and b < 1170 and a odd, where a is plotted on the horizontal axis, b on the vertical. The curvilinear grid is composed of curves of constant m − n and of constant m + n in Euclid's formula, a = m 2 − n 2 , b = 2 m n {\displaystyle a=m^{2}-n^{2},b=2mn} .
By dividing by any common factors, one can assume that this triangle is primitive [10] and from the known form of all primitive Pythagorean triples, one can set =, =, and = +, by which the problem is transformed into finding relatively prime integers and (one of which is even) such that the area () is square.