When.com Web Search

  1. Ad

    related to: mathematica differential equation example

Search results

  1. Results From The WOW.Com Content Network
  2. Differential equation - Wikipedia

    en.wikipedia.org/wiki/Differential_equation

    The order of the differential equation is the highest order of derivative of the unknown function that appears in the differential equation. For example, an equation containing only first-order derivatives is a first-order differential equation, an equation containing the second-order derivative is a second-order differential equation, and so on.

  3. Frobenius method - Wikipedia

    en.wikipedia.org/wiki/Frobenius_method

    Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.

  4. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...

  5. Mathieu function - Wikipedia

    en.wikipedia.org/wiki/Mathieu_function

    Mathieu's differential equations appear in a wide range of contexts in engineering, physics, and applied mathematics. Many of these applications fall into one of two general categories: 1) the analysis of partial differential equations in elliptic geometries, and 2) dynamical problems which involve forces that are periodic in either space or time.

  6. Lorenz system - Wikipedia

    en.wikipedia.org/wiki/Lorenz_system

    The partial differential equations modeling the system's stream function and temperature are subjected to a spectral Galerkin approximation: the hydrodynamic fields are expanded in Fourier series, which are then severely truncated to a single term for the stream function and two terms for the temperature. This reduces the model equations to a ...

  7. Airy function - Wikipedia

    en.wikipedia.org/wiki/Airy_function

    The function Ai(x) and the related function Bi(x), are linearly independent solutions to the differential equation =, known as the Airy equation or the Stokes equation. Because the solution of the linear differential equation d 2 y d x 2 − k y = 0 {\displaystyle {\frac {d^{2}y}{dx^{2}}}-ky=0} is oscillatory for k <0 and exponential for k >0 ...

  8. Dirichlet boundary condition - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_boundary_condition

    In finite-element analysis, the essential or Dirichlet boundary condition is defined by weighted-integral form of a differential equation. [2] The dependent unknown u in the same form as the weight function w appearing in the boundary expression is termed a primary variable , and its specification constitutes the essential or Dirichlet boundary ...

  9. Confluent hypergeometric function - Wikipedia

    en.wikipedia.org/wiki/Confluent_hypergeometric...

    For example, if b = 0 and a ≠ 0 then Γ(a+1)U(a, b, z) − 1 is asymptotic to az ln z as z goes to zero. But see #Special cases for some examples where it is an entire function (polynomial). Note that the solution z 1−b U(a + 1 − b, 2 − b, z) to Kummer's equation is the same as the solution U(a, b, z), see #Kummer's transformation.