When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Radius of curvature (optics) - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature_(optics)

    Radius of curvature sign convention for optical design. Radius of curvature (ROC) has specific meaning and sign convention in optical design. A spherical lens or mirror surface has a center of curvature located either along or decentered from the system local optical axis. The vertex of the lens surface is located on the local optical axis.

  3. Sign convention - Wikipedia

    en.wikipedia.org/wiki/Sign_convention

    The sign of the weight of a tensor density, such as the weight of the determinant of the covariant metric tensor. The active and passive sign convention of current, voltage and power in electrical engineering. A sign convention used for curved mirrors assigns a positive focal length to concave mirrors and a negative focal length to convex mirrors.

  4. Focal length - Wikipedia

    en.wikipedia.org/wiki/Focal_length

    Sign conventions vary between different authors, which results in different forms of these equations depending on the convention used. For a spherically-curved mirror in air, the magnitude of the focal length is equal to the radius of curvature of the mirror divided by two. The focal length is positive for a concave mirror, and negative for a ...

  5. Curved mirror - Wikipedia

    en.wikipedia.org/wiki/Curved_mirror

    Spherical mirrors, however, suffer from spherical aberration—parallel rays reflected from such mirrors do not focus to a single point. For parallel rays, such as those coming from a very distant object, a parabolic reflector can do a better job. Such a mirror can focus incoming parallel rays to a much smaller spot than a spherical mirror can.

  6. Geometrical optics - Wikipedia

    en.wikipedia.org/wiki/Geometrical_optics

    For mirrors with parabolic surfaces, parallel rays incident on the mirror produce reflected rays that converge at a common focus. Other curved surfaces may also focus light, but with aberrations due to the diverging shape causing the focus to be smeared out in space. In particular, spherical mirrors exhibit spherical aberration. Curved mirrors ...

  7. Optics - Wikipedia

    en.wikipedia.org/wiki/Optics

    In particular, spherical mirrors exhibit spherical aberration. Curved mirrors can form images with a magnification greater than or less than one, and the magnification can be negative, indicating that the image is inverted. An upright image formed by reflection in a mirror is always virtual, while an inverted image is real and can be projected ...

  8. Three-mirror anastigmat - Wikipedia

    en.wikipedia.org/wiki/Three-mirror_anastigmat

    The first were proposed in 1935 by Maurice Paul. [1] The basic idea behind Paul's solution is that spherical mirrors, with an aperture stop at the centre of curvature, have only spherical aberration – no coma or astigmatism (but they do produce an image on a curved surface of half the radius of curvature of the spherical mirror).

  9. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    This is the convention followed in this article. In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are the radial distance r along the line connecting the point to a fixed point called the origin;