Search results
Results From The WOW.Com Content Network
The stress–strain index (SSI), of a bone, is a surrogate measure of bone strength [1] determined from a cross-sectional scan by QCT or pQCT (radiological scan).The stress–strain index is used to compare the structural parameters determined by analysis of QCT/pQCT cross-sectional scans to the results of three-point bending test.
On the stress-strain curves for both trabecular bone and cortical bone with different apparent density, there are three stages in stress-strain curve. The first is the linear region where individual trabecula bend and compress as the bulk tissue is compressed. [ 6 ]
Stress–strain curve for brittle materials compared to ductile materials. Some common characteristics among the stress–strain curves can be distinguished with various groups of materials and, on this basis, to divide materials into two broad categories; namely, the ductile materials and the brittle materials. [1]: 51
The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic transition.
The relationship between stress and strain can be simplified for specific stress or strain rates. For high stress or strain rates/short time periods, the time derivative components of the stress–strain relationship dominate. In these conditions it can be approximated as a rigid rod capable of sustaining high loads without deforming.
Fracture strength, also known as breaking strength, is the stress at which a specimen fails via fracture. [2] This is usually determined for a given specimen by a tensile test, which charts the stress–strain curve (see image). The final recorded point is the fracture strength.
Early analysis of bone material properties, specifically resistance to crack growth, concentrated on yielding a single value for the critical stress-intensity factor, , and the critical strain-energy release rate, . While this method yielded important insights into bone behavior, it did not lend insight to crack propagation like the resistance ...
This is not true since the actual area will decrease while deforming due to elastic and plastic deformation. The curve based on the original cross-section and gauge length is called the engineering stress–strain curve, while the curve based on the instantaneous cross-section area and length is called the true stress–strain curve. Unless ...