When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    It might be expected that a continuous function must have a derivative, or that the set of points where it is not differentiable should be countably infinite or finite. According to Weierstrass in his paper, earlier mathematicians including Gauss had often assumed that this was true. This might be because it is difficult to draw or visualise a ...

  3. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    The exponential function becomes arbitrarily steep as x → ∞, and therefore is not globally Lipschitz continuous, despite being an analytic function. The function f(x) = x 2 with domain all real numbers is not Lipschitz continuous. This function becomes arbitrarily steep as x approaches infinity. It is however locally Lipschitz continuous.

  4. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    The absolute value function is continuous (i.e. it has no gaps). It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be ...

  5. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    This is because that function, although continuous, is not differentiable at x = 0. The derivative of f changes its sign at x = 0, but without attaining the value 0. The theorem cannot be applied to this function because it does not satisfy the condition that the function must be differentiable for every x in the open interval.

  6. Pathological (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Pathological_(mathematics)

    The sum of a differentiable function and the Weierstrass function is again continuous but nowhere differentiable; so there are at least as many such functions as differentiable functions. In fact, using the Baire category theorem, one can show that continuous functions are generically nowhere differentiable. [2]

  7. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    Any continuous function on the interval [,] is also uniformly continuous, since [,] is a compact set. If a function is differentiable on an open interval and its derivative is bounded, then the function is uniformly continuous on that interval.

  8. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    However, this function is not continuously differentiable. A smooth function that is not analytic. The function = {, < is continuous, but not differentiable at x = 0, so it is of class C 0, but not of class C 1.

  9. Cantor function - Wikipedia

    en.wikipedia.org/wiki/Cantor_function

    The graph of the Cantor function on the unit interval. In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero ...