When.com Web Search

  1. Ads

    related to: angles on parallel lines pdf download free kuta worksheets

Search results

  1. Results From The WOW.Com Content Network
  2. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    Two lines that are parallel to the same line are also parallel to each other. In a right-angled triangle, the square of the hypotenuse equals the sum of the squares of the other two sides (Pythagoras' theorem). [6] [7] The law of cosines, a generalization of Pythagoras' theorem. There is no upper limit to the area of a triangle. (Wallis axiom) [8]

  3. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    A transversal that cuts two parallel lines at right angles is called a perpendicular transversal. In this case, all 8 angles are right angles [1] When the lines are parallel, a case that is often considered, a transversal produces several congruent supplementary angles. Some of these angle pairs have specific names and are discussed below ...

  4. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    (since these are angles that a transversal makes with parallel lines AB and DC). Also, side AB is equal in length to side DC, since opposite sides of a parallelogram are equal in length. Therefore, triangles ABE and CDE are congruent (ASA postulate, two corresponding angles and the included side). Therefore, =

  5. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    In any affine space (including a Euclidean space) the set of lines parallel to a given line (sharing the same direction) is also called a pencil, and the vertex of each pencil of parallel lines is a distinct point at infinity; including these points results in a projective space in which every pair of lines has an intersection.

  6. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    Since these are equivalent properties, any one of them could be taken as the definition of parallel lines in Euclidean space, but the first and third properties involve measurement, and so, are "more complicated" than the second. Thus, the second property is the one usually chosen as the defining property of parallel lines in Euclidean geometry ...

  7. Parallel projection - Wikipedia

    en.wikipedia.org/wiki/Parallel_projection

    Any line not parallel to direction is mapped onto a line; any line parallel to is mapped onto a point. Parallel lines are mapped on parallel lines, or on a pair of points (if they are parallel to ). The ratio of the length of two line segments on a line stays unchanged. As a special case, midpoints are mapped on midpoints. The length of a line ...

  8. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    The spread between two lines is defined in rational geometry as the square of the sine of the angle between the lines. As the sine of an angle and the sine of its supplementary angle are the same, any angle of rotation that maps one of the lines into the other leads to the same value for the spread between the lines.

  9. Mathematics - Wikipedia

    en.wikipedia.org/wiki/Mathematics

    For larger scales the sum of the angles of a triangle is not equal to 180°. Geometry is one of the oldest branches of mathematics. It started with empirical recipes concerning shapes, such as lines, angles and circles, which were developed mainly for the needs of surveying and architecture, but has since blossomed out into many other subfields ...