Search results
Results From The WOW.Com Content Network
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere. As with the formula for the area of a circle, any derivation of this formula inherently uses methods similar to calculus.
The following is a list of second moments of area of some shapes. The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4, and should not ...
Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities
The area of a self-intersecting polygon can be defined in two different ways, giving different answers: Using the formulas for simple polygons, we allow that particular regions within the polygon may have their area multiplied by a factor which we call the density of the region. For example, the central convex pentagon in the center of a ...
In terms of the circumradius R, the area is: [1] = = The span S of the dodecagon is the distance between two parallel sides and is equal to twice the apothem. A simple formula for area (given side length and span) is: =
The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula = that avoids the usual procedure of doubling the area of the triangle and then halving it.
As the number of sides increases, the internal angle can come very close to 180°, and the shape of the polygon approaches that of a circle. However the polygon can never become a circle. The value of the internal angle can never become exactly equal to 180°, as the circumference would effectively become a straight line (see apeirogon). For ...