Search results
Results From The WOW.Com Content Network
A great many professional mathematicians take no interest in a definition of mathematics, or consider it undefinable. There is not even consensus on whether mathematics is an art or a science. Some just say, "mathematics is what mathematicians do". [166] [167] A common approach is to define mathematics by its object of study. [168] [169] [170 ...
Mathematics majors study additional other areas within pure mathematics—and often in applied mathematics—with the requirement of specified advanced courses in analysis and modern algebra. Other topics in pure mathematics include differential geometry , set theory , and topology .
Mathematics education in the United States varies considerably from one state to the next, and even within a single state. However, with the adoption of the Common Core Standards in most states and the District of Columbia beginning in 2010, mathematics content across the country has moved into closer agreement for each grade level.
Mathematics is the study of topics such as quantity (numbers), structure, space, and change. It evolved through the use of abstraction and logical reasoning , from counting , calculation , measurement , and the systematic study of the shapes and motions of physical objects.
It was the Pythagoreans who coined the term "mathematics", and with whom the study of mathematics for its own sake begins. The Pythagoreans are credited with the first proof of the Pythagorean theorem, [44] though the statement of the theorem has a long history, and with the proof of the existence of irrational numbers.
The relationship between mathematics and physics has been a subject of study of philosophers, mathematicians and physicists since antiquity, and more recently also by historians and educators. [2] Generally considered a relationship of great intimacy, [ 3 ] mathematics has been described as "an essential tool for physics" [ 4 ] and physics has ...
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. [1] Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.
Foundations of mathematics are the logical and mathematical framework that allows the development of mathematics without generating self-contradictory theories, and, in particular, to have reliable concepts of theorems, proofs, algorithms, etc. This may also include the philosophical study of the relation of this framework with reality. [1]