Search results
Results From The WOW.Com Content Network
where is the length of the conductor, measured in metres [m], A is the cross-section area of the conductor measured in square metres [m 2], σ is the electrical conductivity measured in siemens per meter (S·m −1), and ρ is the electrical resistivity (also called specific electrical resistance) of the material, measured in ohm-metres (Ω·m ...
The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and conductors—conduct electric current more easily. The property that distinguishes an insulator is its resistivity; insulators have higher resistivity than semiconductors or conductors. The most common examples are non-metals.
The chemical elements can be broadly divided into metals, metalloids, and nonmetals according to their shared physical and chemical properties.All elemental metals have a shiny appearance (at least when freshly polished); are good conductors of heat and electricity; form alloys with other metallic elements; and have at least one basic oxide.
Electrical conductivity is a measure of how well a material transports an electric charge.This is an essential property in electrical wiring systems. Copper has the highest electrical conductivity rating of all non-precious metals: the electrical resistivity of copper = 16.78 nΩ•m at 20 °C.
In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.
Copper is used as a conductor of heat and electricity, as a building material, and as a constituent of various metal alloys, such as sterling silver used in jewelry, cupronickel used to make marine hardware and coins, and constantan used in strain gauges and thermocouples for temperature measurement.
These definitions are equivalent to stating that metals conduct electricity at absolute zero, as suggested by Nevill Francis Mott, [2]: 257 and the equivalent definition at other temperatures is also commonly used as in textbooks such as Chemistry of the Non-Metals by Ralf Steudel [3] and work on metal–insulator transitions. [4] [5]
Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current.