Search results
Results From The WOW.Com Content Network
In number theory, the radical of a positive integer n is defined as the product of the distinct prime numbers dividing n. Each prime factor of n occurs exactly once as a factor of this product: r a d ( n ) = ∏ p ∣ n p prime p {\displaystyle \displaystyle \mathrm {rad} (n)=\prod _{\scriptstyle p\mid n \atop p{\text{ prime}}}p}
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Plot of the Bring radical for real argument. In algebra, the Bring radical or ultraradical of a real number a is the unique real root of the polynomial + +.. The Bring radical of a complex number a is either any of the five roots of the above polynomial (it is thus multi-valued), or a specific root, which is usually chosen such that the Bring radical is real-valued for real a and is an ...
An unresolved root, especially one using the radical symbol, is sometimes referred to as a surd [2] or a radical. [3] Any expression containing a radical, whether it is a square root, a cube root, or a higher root, is called a radical expression , and if it contains no transcendental functions or transcendental numbers it is called an algebraic ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Cube root calculator reduces any number to simplest radical form; Computing the Cube Root, Ken Turkowski, Apple Technical Report #KT-32, 1998. Includes C source code. Weisstein, Eric W. "Cube Root". MathWorld
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.).
In algebra, the real radical of an ideal I in a polynomial ring with real coefficients is the largest ideal containing I with the same (real) vanishing locus. It plays a similar role in real algebraic geometry that the radical of an ideal plays in algebraic geometry over an algebraically closed field .