Search results
Results From The WOW.Com Content Network
A general solution containing the arbitrary constant is often necessary to identify the correct particular solution. For example, to obtain the antiderivative of cos ( x ) {\displaystyle \cos(x)} that has the value 400 at x = π, then only one value of C {\displaystyle C} will work (in this case C = 400 {\displaystyle C=400} ).
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
Now: (+) = (+) ⏟ ⏟ = = + = (+) +, where is an arbitrary constant of integration. This procedure is frequently used, but not all integrals are of a form that permits its use. In any event, the result should be verified by differentiating and comparing to the original integrand.
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
The dotted vector, in this case B, is differentiated, while the (undotted) A is held constant. The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C ⋅( A × B ) = ( C × A )⋅ B :
If the functional [] attains a local minimum at , and () is an arbitrary function that has at least one derivative and vanishes at the endpoints and , then for any number close to 0, [] [+]. The term ε η {\displaystyle \varepsilon \eta } is called the variation of the function f {\displaystyle f} and is denoted by δ f . {\displaystyle \delta ...
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
The derivative of a constant term is 0, so when a term containing a constant term is differentiated, the constant term vanishes, regardless of its value. Therefore the antiderivative is only determined up to an unknown constant term, which is called "the constant of integration" and added in symbolic form (usually denoted as ).