When.com Web Search

  1. Including results for

    divergence vs convergence

    Search only for divergence vs convergency

Search results

  1. Results From The WOW.Com Content Network
  2. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    The series can be compared to an integral to establish convergence or divergence. Let f ( n ) = a n {\displaystyle f(n)=a_{n}} be a positive and monotonically decreasing function . If

  3. Divergence (statistics) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(statistics)

    The only divergence for probabilities over a finite alphabet that is both an f-divergence and a Bregman divergence is the Kullback–Leibler divergence. [8] The squared Euclidean divergence is a Bregman divergence (corresponding to the function ⁠ x 2 {\displaystyle x^{2}} ⁠ ) but not an f -divergence.

  4. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    Convergence in distribution is the weakest form of convergence typically discussed, since it is implied by all other types of convergence mentioned in this article. However, convergence in distribution is very frequently used in practice; most often it arises from application of the central limit theorem .

  5. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.

  6. Divergent series - Wikipedia

    en.wikipedia.org/wiki/Divergent_series

    The two classical summation methods for series, ordinary convergence and absolute convergence, define the sum as a limit of certain partial sums. These are included only for completeness; strictly speaking they are not true summation methods for divergent series since, by definition, a series is divergent only if these methods do not work.

  7. Kullback–Leibler divergence - Wikipedia

    en.wikipedia.org/wiki/Kullback–Leibler_divergence

    The term "divergence" is in contrast to a distance (metric), since the symmetrized divergence does not satisfy the triangle inequality. [10] Numerous references to earlier uses of the symmetrized divergence and to other statistical distances are given in Kullback (1959, pp. 6–7, §1.3 Divergence).

  8. Rate of convergence - Wikipedia

    en.wikipedia.org/wiki/Rate_of_convergence

    In asymptotic analysis in general, one sequence () that converges to a limit is said to asymptotically converge to with a faster order of convergence than another sequence () that converges to in a shared metric space with distance metric | |, such as the real numbers or complex numbers with the ordinary absolute difference metrics, if

  9. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.