Search results
Results From The WOW.Com Content Network
Programming languages or their standard libraries that support multi-dimensional arrays typically have a native row-major or column-major storage order for these arrays. Row-major order is used in C / C++ / Objective-C (for C-style arrays), PL/I , [ 4 ] Pascal , [ 5 ] Speakeasy , [ citation needed ] and SAS .
Thus, if a two-dimensional array has rows and columns indexed from 1 to 10 and 1 to 20, respectively, then replacing B by B + c 1 − 3c 2 will cause them to be renumbered from 0 through 9 and 4 through 23, respectively. Taking advantage of this feature, some languages (like FORTRAN 77) specify that array indices begin at 1, as in mathematical ...
c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also ...
The index values of the resulting "multi-dimensional array" can be thought of as increasing in row-major order. Multi-dimensional arrays are commonly used in numerical algorithms (mainly from applied linear algebra) to store matrices. The structure of the C array is well suited to this particular task.
Some programming languages provide operations that return the size (number of elements) of a vector, or, more generally, range of each index of an array. In C and C++ arrays do not support the size function, so programmers often have to declare separate variable to hold the size, and pass it to procedures as a separate parameter.
In computer programming, the stride of an array (also referred to as increment, pitch or step size) is the number of locations in memory between beginnings of successive array elements, measured in bytes or in units of the size of the array's elements. The stride cannot be smaller than the element size but can be larger, indicating extra space ...
In computer programming, an iterator is an object that progressively provides access to each item of a collection, in order. [1] [2] [3]A collection may provide multiple iterators via its interface that provide items in different orders, such as forwards and backwards.
The three important reasons for knowing whether a particular computer language compiler are row-major or column major: 1. most common is that the graphics adapter memory order has to be matched to main memory array order, or, at the least, performance suffers because the the data has to move just one cell (oe even pixel) at time if mismatched, otherwise large block moves can work.