Search results
Results From The WOW.Com Content Network
Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy, found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases. [19]
In mathematics, specifically linear algebra, the Woodbury matrix identity – named after Max A. Woodbury [1] [2] – says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k correction to the inverse of the original matrix.
An exchange matrix is the simplest anti-diagonal matrix. Any matrix A satisfying the condition AJ = JA is said to be centrosymmetric. Any matrix A satisfying the condition AJ = JA T is said to be persymmetric. Symmetric matrices A that satisfy the condition AJ = JA are called bisymmetric matrices. Bisymmetric matrices are both centrosymmetric ...
In linear algebra, two rectangular m-by-n matrices A and B are called equivalent if = for some invertible n-by-n matrix P and some invertible m-by-m matrix Q.Equivalent matrices represent the same linear transformation V → W under two different choices of a pair of bases of V and W, with P and Q being the change of basis matrices in V and W respectively.
A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].
In mathematics, and in particular linear algebra, the Moore–Penrose inverse + of a matrix , often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]
Matrix multiplication also does not necessarily obey the cancellation law. If AB = AC and A ≠ 0, then one must show that matrix A is invertible (i.e. has det(A) ≠ 0) before one can conclude that B = C. If det(A) = 0, then B might not equal C, because the matrix equation AX = B will not have a unique solution for a non-invertible matrix A.
Invertibility of integer matrices is in general more numerically stable than that of non-integer matrices. The determinant of an integer matrix is itself an integer, and the adj of an integer Matrix is also integer Matrix, thus the numerically smallest possible magnitude of the determinant of an invertible integer matrix is one, hence where inverses exist they do not become excessively large ...