When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Machine learning in physics - Wikipedia

    en.wikipedia.org/wiki/Machine_learning_in_physics

    A basic example of this is quantum state tomography, where a quantum state is learned from measurement. [1] Other examples include learning Hamiltonians, [2] [3] learning quantum phase transitions, [4] [5] and automatically generating new quantum experiments.

  3. Restricted Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Restricted_Boltzmann_machine

    Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.

  4. Applications of artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Applications_of_artificial...

    For example, there is a prototype, photonic, quantum memristive device for neuromorphic (quantum-)computers (NC)/artificial neural networks and NC-using quantum materials with some variety of potential neuromorphic computing-related applications, [367] [368] and quantum machine learning is a field with some variety of applications under ...

  5. Quantum machine learning - Wikipedia

    en.wikipedia.org/wiki/Quantum_machine_learning

    The term "quantum machine learning" sometimes refers to classical machine learning performed on data from quantum systems. A basic example of this is quantum state tomography, where a quantum state is learned from measurement. Other applications include learning Hamiltonians [101] and automatically generating quantum experiments. [20]

  6. Physics-informed neural networks - Wikipedia

    en.wikipedia.org/wiki/Physics-informed_neural...

    Physics-informed neural networks for solving Navier–Stokes equations. Physics-informed neural networks (PINNs), [1] also referred to as Theory-Trained Neural Networks (TTNs), [2] are a type of universal function approximators that can embed the knowledge of any physical laws that govern a given data-set in the learning process, and can be described by partial differential equations (PDEs).

  7. Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_machine

    A Boltzmann machine (also called Sherrington–Kirkpatrick model with external field or stochastic Ising model), named after Ludwig Boltzmann is a spin-glass model with an external field, i.e., a Sherrington–Kirkpatrick model, [1] that is a stochastic Ising model. It is a statistical physics technique applied in the context of cognitive ...

  8. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]

  9. Conservation law - Wikipedia

    en.wikipedia.org/wiki/Conservation_law

    [10]: 62–63 By integrating in any space-time domain the current density form in 1-D space: + = and by using Green's theorem, the integral form is: + = In a similar fashion, for the scalar multidimensional space, the integral form is: ∮ [ y d N r + j ( y ) d t ] = 0 {\displaystyle \oint \left[y\,d^{N}r+j(y)\,dt\right]=0} where the line ...