Ads
related to: convex logarithmic function calculator
Search results
Results From The WOW.Com Content Network
A logarithmically convex function f is a convex function since it is the composite of the increasing convex function and the function , which is by definition convex. However, being logarithmically convex is a strictly stronger property than being convex.
A wide variety of sigmoid functions including the logistic and hyperbolic tangent functions have been used as the activation function of artificial neurons. Sigmoid curves are also common in statistics as cumulative distribution functions (which go from 0 to 1), such as the integrals of the logistic density , the normal density , and Student's ...
A function (in black) is convex if and only if the region above its graph (in green) is a convex set. A graph of the bivariate convex function x 2 + xy + y 2. Convex vs. Not convex
A log-concave function is also quasi-concave. This follows from the fact that the logarithm is monotone implying that the superlevel sets of this function are convex. [1] Every concave function that is nonnegative on its domain is log-concave. However, the reverse does not necessarily hold.
A function f is concave over a convex set if and only if the function −f is a convex function over the set. The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.
In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity.
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
In mathematics and mathematical optimization, the convex conjugate of a function is a generalization of the Legendre transformation which applies to non-convex functions. It is also known as Legendre–Fenchel transformation , Fenchel transformation , or Fenchel conjugate (after Adrien-Marie Legendre and Werner Fenchel ).