Search results
Results From The WOW.Com Content Network
This allows for areas of lower local contrast to gain a higher contrast. Histogram equalization accomplishes this by effectively spreading out the highly populated intensity values which are used to degrade image contrast. The method is useful in images with backgrounds and foregrounds that are both bright or both dark.
The basic intent of the contrast enhancement technique is to adjust the local contrast in the image so as to bring out the clear regions or objects in the image . Low-contrast images often result from poor or non-uniform lighting conditions, a limited dynamic range of the imaging sensor , or improper settings of the lens aperture.
Improvements in picture brightness and contrast can thus be obtained. In the field of computer vision, image histograms can be useful tools for thresholding. Because the information contained in the graph is a representation of pixel distribution as a function of tonal variation, image histograms can be analyzed for peaks and/or valleys.
Adaptive histogram equalization (AHE) is a computer image processing technique used to improve contrast in images. It differs from ordinary histogram equalization in the respect that the adaptive method computes several histograms, each corresponding to a distinct section of the image, and uses them to redistribute the lightness values of the image.
An example of histogram matching. In image processing, histogram matching or histogram specification is the transformation of an image so that its histogram matches a specified histogram. [1] The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed. [2]
The complex wavelet transform variant of the SSIM (CW-SSIM) is designed to deal with issues of image scaling, translation and rotation. Instead of giving low scores to images with such conditions, the CW-SSIM takes advantage of the complex wavelet transform and therefore yields higher scores to said images. The CW-SSIM is defined as follows:
Once the images are acquired, processing can begin. A flat-field consists of two numbers for each pixel, the pixel's gain and its dark current (or dark frame). The pixel's gain is how the amount of signal given by the detector varies as a function of the amount of light (or equivalent).
Histogram shape-based methods, where, for example, the peaks, valleys and curvatures of the smoothed histogram are analyzed. [3] Note that these methods, more than others, make certain assumptions about the image intensity probability distribution (i.e., the shape of the histogram),