Search results
Results From The WOW.Com Content Network
An ADC with an intermediate FM stage first uses a voltage-to-frequency converter to produce an oscillating signal with a frequency proportional to the voltage of the input signal, and then uses a frequency counter to convert that frequency into a digital count proportional to the desired signal voltage. Longer integration times allow for higher ...
An analog-to-digital converter (ADC) can be modeled as two processes: sampling and quantization. Sampling converts a time-varying voltage signal into a discrete-time signal, a sequence of real numbers. Quantization replaces each real number with an approximation from a finite set of discrete values.
ADC and DAC Glossary – Maxim Integrated Products; Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so you don't get lost in the noise floor – Analog Devices; The Relationship of dynamic range to data word size in digital audio processing; Calculation of signal-to-noise ratio, noise voltage, and noise level
Delta-sigma (ΔΣ; or sigma-delta, ΣΔ) modulation is an oversampling method for encoding signals into low bit depth digital signals at a very high sample-frequency as part of the process of delta-sigma analog-to-digital converters (ADCs) and digital-to-analog converters (DACs).
The sine wave is sampled at regular intervals, shown as vertical lines. For each sample, one of the available values (on the y-axis) is chosen. The PCM process is commonly implemented on a single integrated circuit called an analog-to-digital converter (ADC). This produces a fully discrete representation of the input signal (blue points) that ...
The Euclidean rhythm in music was discovered by Godfried Toussaint in 2004 and is described in a 2005 paper "The Euclidean Algorithm Generates Traditional Musical Rhythms". [1] The greatest common divisor of two numbers is used rhythmically giving the number of beats and silences, generating almost all of the most important world music rhythms ...
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.
The circuit consists of an up-down counter with the comparator controlling the direction of the count. The analog output of the DAC is compared with the analog input. If the input is greater than the DAC output signal, the output of the comparator goes high and the counter is caused to count up. The tracking ADC has the advantage of being simple.