When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotational energy - Wikipedia

    en.wikipedia.org/wiki/Rotational_energy

    An example is the calculation of the rotational kinetic energy of the Earth. As the Earth has a sidereal rotation period of 23.93 hours, it has an angular velocity of 7.29 × 10 −5 rad·s −1. [2] The Earth has a moment of inertia, I = 8.04 × 10 37 kg·m 2. [3] Therefore, it has a rotational kinetic energy of 2.14 × 10 29 J.

  3. Generalized coordinates - Wikipedia

    en.wikipedia.org/wiki/Generalized_coordinates

    which illustrates the kinetic energy is in general a function of the generalized velocities, coordinates, and time if the constraints also vary with time, so T = T(q, dq/dt, t). In the case the constraints on the particles are time-independent, then all partial derivatives with respect to time are zero, and the kinetic energy is a homogeneous ...

  4. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    A macroscopic body that is stationary (i.e. a reference frame has been chosen to correspond to the body's center of momentum) may have various kinds of internal energy at the molecular or atomic level, which may be regarded as kinetic energy, due to molecular translation, rotation, and vibration, electron translation and spin, and nuclear spin ...

  5. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is

  6. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Energy can broadly be classified into kinetic, due to a body's motion, and potential, due to a body's position relative to others. Thermal energy , the energy carried by heat flow, is a type of kinetic energy not associated with the macroscopic motion of objects but instead with the movements of the atoms and molecules of which they are made.

  7. Poinsot's ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Poinsot's_ellipsoid

    This motion has four constants: the kinetic energy of the body and the three components of the angular momentum, expressed with respect to an inertial laboratory frame. The angular velocity vector ω {\displaystyle {\boldsymbol {\omega }}} of the rigid rotor is not constant , but satisfies Euler's equations .

  8. Multibody system - Wikipedia

    en.wikipedia.org/wiki/Multibody_system

    Each multibody system formulation may lead to a different mathematical appearance of the equations of motion while the physics behind is the same. The motion of the constrained bodies is described by means of equations that result basically from Newton’s second law.

  9. Newton–Euler equations - Wikipedia

    en.wikipedia.org/wiki/Newton–Euler_equations

    Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments) acting on the rigid body.