When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rank factorization - Wikipedia

    en.wikipedia.org/wiki/Rank_factorization

    Every finite-dimensional matrix has a rank decomposition: Let be an matrix whose column rank is . Therefore, there are r {\textstyle r} linearly independent columns in A {\textstyle A} ; equivalently, the dimension of the column space of A {\textstyle A} is r {\textstyle r} .

  3. Symmetric rank-one - Wikipedia

    en.wikipedia.org/wiki/Symmetric_rank-one

    The Symmetric Rank 1 (SR1) method is a quasi-Newton method to update the second derivative (Hessian) based on the derivatives (gradients) calculated at two points. It is a generalization to the secant method for a multidimensional problem. This update maintains the symmetry of the matrix but does not guarantee that the update be positive definite.

  4. Symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Symmetric_matrix

    A complex symmetric matrix can be 'diagonalized' using a unitary matrix: thus if is a complex symmetric matrix, there is a unitary matrix such that is a real diagonal matrix with non-negative entries.

  5. Divide-and-conquer eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Divide-and-conquer_eigen...

    The remaining task has been reduced to finding the eigenvalues of a diagonal matrix plus a rank-one correction. Before showing how to do this, let us simplify the notation. We are looking for the eigenvalues of the matrix D + w w T {\displaystyle D+ww^{T}} , where D {\displaystyle D} is diagonal with distinct entries and w {\displaystyle w} is ...

  6. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  7. Minimum rank of a graph - Wikipedia

    en.wikipedia.org/wiki/Minimum_rank_of_a_graph

    The minimum rank of a graph is always at most equal to n − 1, where n is the number of vertices in the graph. [1] For every induced subgraph H of a given graph G, the minimum rank of H is at most equal to the minimum rank of G. [2] If a graph is disconnected, then its minimum rank is the sum of the minimum ranks of its connected components. [3]

  8. Symmetric tensor - Wikipedia

    en.wikipedia.org/wiki/Symmetric_tensor

    are also possible. The minimum number r for which such a decomposition is possible is the symmetric rank of T. [3] This minimal decomposition is called a Waring decomposition; it is a symmetric form of the tensor rank decomposition. For second-order tensors this corresponds to the rank of the matrix representing the tensor in any basis, and it ...

  9. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    A matrix that has rank min(m, n) is said to have full rank; otherwise, the matrix is rank deficient. Only a zero matrix has rank zero. f is injective (or "one-to-one") if and only if A has rank n (in this case, we say that A has full column rank). f is surjective (or "onto") if and only if A has rank m (in this case, we say that A has full row ...