Search results
Results From The WOW.Com Content Network
The scalar potential is an example of a scalar field. Given a vector field F, the scalar potential P is defined such that: [1] = = (,,), where ∇P is the gradient of P and the second part of the equation is minus the gradient for a function of the Cartesian coordinates x, y, z. [a] In some cases, mathematicians may use a positive sign in front ...
In advanced classical mechanics it is often useful, and in quantum mechanics frequently essential, to express Maxwell's equations in a potential formulation involving the electric potential (also called scalar potential) φ, and the magnetic potential (a vector potential) A. For example, the analysis of radio antennas makes full use of Maxwell ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The term potential function may refer to: A mathematical function , whose values are given by a scalar potential or vector potential The electric potential , in the context of electrodynamics , is formally described by both a scalar electrostatic potential and a magnetic vector potential
In mathematics and mathematical physics, potential theory is the study of harmonic functions.. The term "potential theory" was coined in 19th-century physics when it was realized that two fundamental forces of nature known at the time, namely gravity and the electrostatic force, could be modeled using functions called the gravitational potential and electrostatic potential, both of which ...
The Liénard–Wiechert potentials describe the classical electromagnetic effect of a moving electric point charge in terms of a vector potential and a scalar potential in the Lorenz gauge. Stemming directly from Maxwell's equations , these describe the complete, relativistically correct, time-varying electromagnetic field for a point charge in ...
The gravitational potential (V) at a location is the gravitational potential energy (U) at that location per unit mass: =, where m is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity.
The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).