When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Division by zero - Wikipedia

    en.wikipedia.org/wiki/Division_by_zero

    Division is the inverse of multiplication, meaning that multiplying and then dividing by the same non-zero quantity, or vice versa, leaves an original quantity unchanged; for example () / = (/) =. [12]

  3. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    For example, since 4 multiplied by 3 equals 12, 12 divided by 3 equals 4. Indeed, multiplication by 3, followed by division by 3, yields the original number. The division of a number other than 0 by itself equals 1. Several mathematical concepts expand upon the fundamental idea of multiplication.

  4. Zero-product property - Wikipedia

    en.wikipedia.org/wiki/Zero-product_property

    Thus, the zero-product property holds for any subring of a skew field. If is a prime number, then the ring of integers modulo has the zero-product property (in fact, it is a field). The Gaussian integers are an integral domain because they are a subring of the complex numbers.

  5. Multiplication table - Wikipedia

    en.wikipedia.org/wiki/Multiplication_table

    Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5. As you would start on the number you are multiplying, when you multiply by 0, you stay on 0 (0 is external and so the arrows have no effect on 0, otherwise 0 is used as a link to create a perpetual cycle).

  6. Multiple (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiple_(mathematics)

    This is because there are integers that 7 may be multiplied by to reach the values of 14, 49, 0 and −21, while there are no such integers for 3 and −6. Each of the products listed below, and in particular, the products for 3 and −6, is the only way that the relevant number can be written as a product of 7 and another real number:

  7. Extraneous and missing solutions - Wikipedia

    en.wikipedia.org/wiki/Extraneous_and_missing...

    This counterintuitive result occurs because in the case where =, multiplying both sides by multiplies both sides by zero, and so necessarily produces a true equation just as in the first example. In general, whenever we multiply both sides of an equation by an expression involving variables, we introduce extraneous solutions wherever that ...

  8. Multiplication sign - Wikipedia

    en.wikipedia.org/wiki/Multiplication_sign

    In algebraic notation, widely used in mathematics, a multiplication symbol is usually omitted wherever it would not cause confusion: "a multiplied by b" can be written as ab or a b. [1] Other symbols can also be used to denote multiplication, often to reduce confusion between the multiplication sign × and the common variable x.

  9. Undefined (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Undefined_(mathematics)

    This operation is undefined in arithmetic, and therefore deductions based on division by zero can be contradictory. If we assume that a non-zero answer exists, when some number is divided by zero, then that would imply that =. But there is no number, which when multiplied by zero, produces a number that is not zero.