When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Extrapolation - Wikipedia

    en.wikipedia.org/wiki/Extrapolation

    Linear extrapolation means creating a tangent line at the end of the known data and extending it beyond that limit. Linear extrapolation will only provide good results when used to extend the graph of an approximately linear function or not too far beyond the known data.

  3. Linear interpolation - Wikipedia

    en.wikipedia.org/wiki/Linear_interpolation

    Outside this interval, the formula is identical to linear extrapolation. This formula can also be understood as a weighted average. The weights are inversely related to the distance from the end points to the unknown point; the closer point has more influence than the farther point.

  4. Richardson extrapolation - Wikipedia

    en.wikipedia.org/wiki/Richardson_extrapolation

    The Richardson extrapolation can be considered as a linear sequence transformation. Additionally, the general formula can be used to estimate (leading order step size behavior of Truncation error) when neither its value nor is known a priori.

  5. Interpolation - Wikipedia

    en.wikipedia.org/wiki/Interpolation

    The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.

  6. Aitken's delta-squared process - Wikipedia

    en.wikipedia.org/wiki/Aitken's_delta-squared_process

    In numerical analysis, Aitken's delta-squared process or Aitken extrapolation is a series acceleration method used for accelerating the rate of convergence of a sequence. It is named after Alexander Aitken, who introduced this method in 1926. [1] It is most useful for accelerating the convergence of a sequence that is converging linearly.

  7. Bilinear interpolation - Wikipedia

    en.wikipedia.org/wiki/Bilinear_interpolation

    Example of bilinear interpolation on the unit square with the z values 0, 1, 1 and 0.5 as indicated. Interpolated values in between represented by color. In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation.

  8. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    Solving an interpolation problem leads to a problem in linear algebra amounting to inversion of a matrix. Using a standard monomial basis for our interpolation polynomial () = =, we must invert the Vandermonde matrix to solve () = for the coefficients of ().

  9. Newton polynomial - Wikipedia

    en.wikipedia.org/wiki/Newton_polynomial

    For that purpose, the divided-difference formula and/or its x 0 point should be chosen so that the formula will use, for its linear term, the two data points between which the linear interpolation of interest would be done. The divided difference formulas are more versatile, useful in more kinds of problems.