Search results
Results From The WOW.Com Content Network
The theory of finite fields, whose origins can be traced back to the works of Gauss and Galois, has played a part in various branches of mathematics.Due to the applicability of the concept in other topics of mathematics and sciences like computer science there has been a resurgence of interest in finite fields and this is partly due to important applications in coding theory and cryptography.
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: =. That difference is algebraically factorable as (+) (); if neither factor equals one, it is a proper factorization of N.
If two or more factors of a polynomial are identical, then the polynomial is a multiple of the square of this factor. The multiple factor is also a factor of the polynomial's derivative (with respect to any of the variables, if several). For univariate polynomials, multiple factors are equivalent to multiple roots (over a suitable extension field).
More generally, we can factor a complex m×n matrix A, with m ≥ n, as the product of an m×m unitary matrix Q and an m×n upper triangular matrix R.As the bottom (m−n) rows of an m×n upper triangular matrix consist entirely of zeroes, it is often useful to partition R, or both R and Q:
In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix multiplication and matrix decomposition).
A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.
The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b). In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.
Macaulay's notation is commonly used in the static analysis of bending moments of a beam. This is useful because shear forces applied on a member render the shear and moment diagram discontinuous.