When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Elliptic curve point multiplication - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve_point...

    Given a curve, E, defined by some equation in a finite field (such as E: y 2 = x 3 + ax + b), point multiplication is defined as the repeated addition of a point along that curve. Denote as nP = P + P + P + … + P for some scalar (integer) n and a point P = (x, y) that lies on the curve, E. This type of curve is known as a Weierstrass curve.

  3. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r , then the L -function L ( E , s ) associated with it vanishes to order r at s = 1 .

  4. Complex multiplication - Wikipedia

    en.wikipedia.org/wiki/Complex_multiplication

    In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. [1] Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice.

  5. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  6. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain). Other versions of the convolution theorem are applicable to various Fourier-related transforms.

  7. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    6 Side-channel attacks. 7 See also. ... Montgomery modular multiplication, ... 4 0487670 0 5 0487670 0 6 0487670 0 i ← 1 m ← 4 ⋅ 7 mod 10 = 8 j T c ...

  8. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    The Schönhage–Strassen algorithm was the asymptotically fastest multiplication method known from 1971 until 2007. It is asymptotically faster than older methods such as Karatsuba and Toom–Cook multiplication, and starts to outperform them in practice for numbers beyond about 10,000 to 100,000 decimal digits. [2]

  9. Skip counting - Wikipedia

    en.wikipedia.org/wiki/Skip_counting

    Skip counting is a mathematics technique taught as a kind of multiplication in reform mathematics textbooks such as TERC. In older textbooks, this technique is called counting by twos (threes, fours, etc.). In skip counting by twos, a person can count to 10 by only naming every other even number: 2, 4, 6, 8, 10. [1]