When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:

  3. List of Johnson solids - Wikipedia

    en.wikipedia.org/wiki/List_of_Johnson_solids

    A convex polyhedron whose faces are regular polygons is known as a Johnson solid, or sometimes as a Johnson–Zalgaller solid [3]. Some authors exclude uniform polyhedra from the definition. A uniform polyhedron is a polyhedron in which the faces are regular and they are isogonal ; examples include Platonic and Archimedean solids as well as ...

  4. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...

  5. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    In all of these definitions, a polyhedron is typically understood as a three-dimensional example of the more general polytope in any number of dimensions. For example, a polygon has a two-dimensional body and no faces, while a 4-polytope has a four-dimensional body and an additional set of three-dimensional "cells". However, some of the ...

  6. Ideal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Ideal_polyhedron

    Hodgson, Rivin & Smith (1992) show that a convex polyhedron is equivalent to an ideal polyhedron if and only if it is possible to assign numbers to its edges with the same properties: these numbers all lie between and , they add up to at each vertex, and they add up to more than on each non-facial cycle of the dual graph. When such an ...

  7. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    In elementary geometry, a face is a polygon [note 1] on the boundary of a polyhedron. [3] [4] Other names for a polygonal face include polyhedron side and Euclidean plane tile. For example, any of the six squares that bound a cube is a face of the cube. Sometimes "face" is also used to refer to the 2-dimensional features of a 4-polytope.

  8. 4-polytope - Wikipedia

    en.wikipedia.org/wiki/4-polytope

    A cell is the three-dimensional analogue of a face, and is therefore a polyhedron. Each face must join exactly two cells, analogous to the way in which each edge of a polyhedron joins just two faces. Like any polytope, the elements of a 4-polytope cannot be subdivided into two or more sets which are also 4-polytopes, i.e. it is not a compound.

  9. Dehn invariant - Wikipedia

    en.wikipedia.org/wiki/Dehn_invariant

    Defining the Dehn invariant in a way that can apply to all polyhedra simultaneously involves infinite-dimensional vector spaces (see § Full definition, below).However, when restricted to any particular example consisting of finitely many polyhedra, such as the Platonic solids, it can be defined in a simpler way, involving only a finite number of dimensions, as follows: [7]