Search results
Results From The WOW.Com Content Network
A widely used type of composition is the nonlinear weighted sum, where () = (()), where (commonly referred to as the activation function [3]) is some predefined function, such as the hyperbolic tangent, sigmoid function, softmax function, or rectifier function. The important characteristic of the activation function is that it provides a smooth ...
The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights. Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear .
In the mathematical theory of artificial neural networks, universal approximation theorems are theorems [1] [2] of the following form: Given a family of neural networks, for each function from a certain function space, there exists a sequence of neural networks ,, … from the family, such that according to some criterion.
Differentiable programming has found use in a wide variety of areas, particularly scientific computing and machine learning. [5] One of the early proposals to adopt such a framework in a systematic fashion to improve upon learning algorithms was made by the Advanced Concepts Team at the European Space Agency in early 2016. [6]
In machine learning, ... Note that the output of the th neuron, , is just the neuron's activation function applied to the neuron's input . We can ...
The LogSumExp function is (, …,) = (+ +) and its gradient is the softmax; the softmax with the first argument set to zero is the multivariable generalization of the logistic function. Both LogSumExp and softmax are used in machine learning.
Online machine learning, from the work of Nick Littlestone [citation needed]. While its primary goal is to understand learning abstractly, computational learning theory has led to the development of practical algorithms. For example, PAC theory inspired boosting, VC theory led to support vector machines, and Bayesian inference led to belief ...
Specifically, function classes that ensure the existence of a sequence {^} that satisfies are known as learnable classes. [ 1 ] It is worth noting that at least for supervised classification and regression problems, if a function class is learnable, then the empirical risk minimization automatically satisfies ( 1 ). [ 2 ]