When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Double descent - Wikipedia

    en.wikipedia.org/wiki/Double_descent

    Double descent in statistics and machine learning is the phenomenon where a model with a small number of parameters and a model with an extremely large number of parameters both have a small training error, but a model whose number of parameters is about the same as the number of data points used to train the model will have a much greater test ...

  3. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    A widely used type of composition is the nonlinear weighted sum, where () = (()), where (commonly referred to as the activation function [3]) is some predefined function, such as the hyperbolic tangent, sigmoid function, softmax function, or rectifier function. The important characteristic of the activation function is that it provides a smooth ...

  4. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights. Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear .

  5. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    In the mathematical theory of artificial neural networks, universal approximation theorems are theorems [1] [2] of the following form: Given a family of neural networks, for each function from a certain function space, there exists a sequence of neural networks ,, … from the family, such that according to some criterion.

  6. Computational learning theory - Wikipedia

    en.wikipedia.org/wiki/Computational_learning_theory

    Online machine learning, from the work of Nick Littlestone [citation needed]. While its primary goal is to understand learning abstractly, computational learning theory has led to the development of practical algorithms. For example, PAC theory inspired boosting, VC theory led to support vector machines, and Bayesian inference led to belief ...

  7. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    The perceptron uses the Heaviside step function as the activation function (), and that means that ′ does not exist at zero, and is equal to zero elsewhere, which makes the direct application of the delta rule impossible.

  8. Active learning (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Active_learning_(machine...

    Active learning is a special case of machine learning in which a learning algorithm can interactively query a human user (or some other information source), to label new data points with the desired outputs. The human user must possess knowledge/expertise in the problem domain, including the ability to consult/research authoritative sources ...

  9. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    A key breakthrough was LSTM (1995), [note 1] a RNN which used various innovations to overcome the vanishing gradient problem, allowing efficient learning of long-sequence modelling. One key innovation was the use of an attention mechanism which used neurons that multiply the outputs of other neurons, so-called multiplicative units . [ 11 ]

  1. Related searches atu and dpat function in machine learning definition for dummies 1

    atu and dpat function in machine learning definition for dummies 1 life