Search results
Results From The WOW.Com Content Network
d is the total horizontal distance travelled by the projectile. v is the velocity at which the projectile is launched g is the gravitational acceleration —usually taken to be 9.81 m/s 2 (32 f/s 2 ) near the Earth's surface
In this equation, the origin is the midpoint of the horizontal range of the projectile, and if the ground is flat, the parabolic arc is plotted in the range . This expression can be obtained by transforming the Cartesian equation as stated above by y = r sin ϕ {\displaystyle y=r\sin \phi } and x = r cos ϕ {\displaystyle x=r\cos \phi } .
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
To find the angle giving the maximum height for a given speed calculate the derivative of the maximum height = / with respect to , that is = / which is zero when = / =. So the maximum height H m a x = v 2 2 g {\displaystyle H_{\mathrm {max} }={v^{2} \over 2g}} is obtained when the projectile is fired straight up.
If the horizontal speed is , then the periapsis distance is . The energy at the surface of the Earth corresponds to that of an elliptic orbit with a = R / 2 {\displaystyle a=R/2\,\!} (with R {\displaystyle R\,\!} the radius of the Earth), which can not actually exist because it is an ellipse fully below the surface.
Escape speed at a distance d from the center of a spherically symmetric primary body (such as a star or a planet) with mass M is given by the formula [2] [3] = = where: G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 [4])
Because speed is constant, the velocity vectors on the right sweep out a circle as time advances. For a swept angle dθ = ω dt the change in v is a vector at right angles to v and of magnitude v dθ , which in turn means that the magnitude of the acceleration is given by a c = v d θ d t = v ω = v 2 r {\displaystyle a_{c}=v{\frac {d\theta ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.