When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of refractive indices - Wikipedia

    en.wikipedia.org/wiki/List_of_refractive_indices

    Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.

  3. Topaz - Wikipedia

    en.wikipedia.org/wiki/Topaz

    Topaz is a silicate mineral made of aluminum and fluorine with the chemical formula Al 2 Si O 4 (F, OH) 2.It is used as a gemstone in jewelry and other adornments. Common topaz in its natural state is colorless, though trace element impurities can make it pale blue or golden brown to yellow-orange. [7]

  4. List of mineral tests - Wikipedia

    en.wikipedia.org/wiki/List_of_mineral_tests

    The Mohs Hardness Scale is the main scale to measure mineral hardness. Finger nail is 2.5, copper coin is 3.5, glass is 5.5 and steel is 6.5. Hardness scale is Talc is 1, Gypsum is 2, Calcite is 3, Fluorite is 4, Apatite is 5, Orthoclase Feldspar is 6, Quartz is 7, Topaz is 8, Corundum is 9 and Diamond is 10. Odor; Not always recommended.

  5. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    From Snell's law it can be seen that the angle of refraction of light in a prism depends on the refractive index of the prism material. Since that refractive index varies with wavelength, it follows that the angle that the light is refracted by will also vary with wavelength, causing an angular separation of the colors known as angular dispersion .

  6. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refracted , when entering a material.

  7. Birefringence - Wikipedia

    en.wikipedia.org/wiki/Birefringence

    In a uniaxial material, one ray behaves according to the normal law of refraction (corresponding to the ordinary refractive index), so an incoming ray at normal incidence remains normal to the refracting surface. As explained above, the other polarization can deviate from normal incidence, which cannot be described using the law of refraction.

  8. Optical mineralogy - Wikipedia

    en.wikipedia.org/wiki/Optical_mineralogy

    The difference between the refractive indexes of the ordinary and the extraordinary ray in quartz is .009, and in a rock-section about 1/500 of an inch thick, this mineral gives grey and white polarization colors; nepheline with weaker double refraction gives dark grey; augite on the other hand will give red and blue, while calcite with the ...

  9. Opalescence - Wikipedia

    en.wikipedia.org/wiki/Opalescence

    The optical effects seen in various types of opal are a result of refraction (precious and fire) or reflection (common) due to the layering, spacing, and size of the myriad microscopic silicon dioxide spheres and included water (or air) in its physical structure.