Search results
Results From The WOW.Com Content Network
Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.
Example: Prob(Z ≤ 0.69) = 0.7549. Complementary cumulative gives a probability that a statistic is greater than Z. This equates to the area of the distribution above Z. Example: Find Prob(Z ≥ 0.69). Since this is the portion of the area above Z, the proportion that is greater than Z is found by subtracting Z from 1.
Aortic root Z-score ≥ 2 AND ectopia lentis; Aortic root Z-score ≥ 2 AND an FBN1 mutation; Aortic root Z-score ≥ 2 AND a systemic score* > 7 points; Ectopia lentis AND an FBN1 mutation with known aortic pathology; In the presence of a family history of MFS (as defined above): Ectopia lentis; Systemic score* ≥ 7; Aortic root Z-score ≥ 2
To calculate the standardized statistic = (¯), we need to either know or have an approximate value for σ 2, from which we can calculate =. In some applications, σ 2 is known, but this is uncommon. If the sample size is moderate or large, we can substitute the sample variance for σ 2 , giving a plug-in test.
The original Z-score formula was as follows: [1] Z = 1.2X 1 + 1.4X 2 + 3.3X 3 + 0.6X 4 + 1.0X 5. X 1 = ratio of working capital to total assets. Measures liquid assets in relation to the size of the company. X 2 = ratio of retained earnings to total assets. Measures profitability that reflects the company's age and earning power.
The term normal score is used with two different meanings in statistics. One of them relates to creating a single value which can be treated as if it had arisen from a standard normal distribution (zero mean, unit variance). The second one relates to assigning alternative values to data points within a dataset, with the broad intention of ...
In educational statistics, a normal curve equivalent (NCE), developed for the United States Department of Education by the RMC Research Corporation, [1] is a way of normalizing scores received on a test into a 0-100 scale similar to a percentile rank, but preserving the valuable equal-interval properties of a z-score. It is defined as:
The Z-factor defines a characteristic parameter of the capability of hit identification for each given assay. The following categorization of HTS assay quality by the value of the Z-Factor is a modification of Table 1 shown in Zhang et al. (1999); [2] note that the Z-factor cannot exceed one.