Search results
Results From The WOW.Com Content Network
For a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. [2] Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant.
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
So when water molecules (water vapor) are added to a given volume of air, the dry air molecules must decrease by the same number, to keep the pressure from increasing or temperature from decreasing. Hence the mass per unit volume of the gas (its density) decreases. The density of humid air may be calculated by treating it as a mixture of ideal ...
For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
Conversely, decreasing temperature would also make some water condense, again making the final volume deviating from predicted by the ideal gas law. Therefore, gas volume may alternatively be expressed excluding the humidity content: V d (volume dry). This fraction more accurately follows the ideal gas law. On the contrary, V s (volume ...
This gives the well known equation [43] (with subsequently estimated below) for shear viscosity for dilute gases: = = and is the molar mass. The equation above presupposes that the gas density is low (i.e. the pressure is low).
For a gas that is a mixture of two or more pure gases (air or natural gas, for example), the gas composition must be known before compressibility can be calculated. Alternatively, the compressibility factor for specific gases can be read from generalized compressibility charts [ 1 ] that plot Z {\displaystyle Z} as a function of pressure at ...