Search results
Results From The WOW.Com Content Network
In general, Mott insulators occur when the repulsive Coulomb potential U is large enough to create an energy gap. One of the simplest theories of Mott insulators is the 1963 Hubbard model. The crossover from a metal to a Mott insulator as U is increased, can be predicted within the so-called dynamical mean field theory.
Neuromorphic engineering is an interdisciplinary subject that takes inspiration from biology, physics, mathematics, computer science, and electronic engineering [4] to design artificial neural systems, such as vision systems, head-eye systems, auditory processors, and autonomous robots, whose physical architecture and design principles are ...
Mead's contributions have arisen from the application of basic physics to the development of electronic devices, often in novel ways. During the 1960s, he carried out systematic investigations into the energy behavior of electrons in insulators and semiconductors, developing a deep understanding of electron tunneling, barrier behavior and hot electron transport. [13]
The Mott insulating phases are characterized by integer boson densities, by the existence of an energy gap for particle-hole excitations, and by zero compressibility. The superfluid is characterized by long-range phase coherence, a spontaneous breaking of the Hamiltonian's continuous U ( 1 ) {\displaystyle U(1)} symmetry, a non-zero ...
The perovskite structure of BSCCO, a high-temperature superconductor and a strongly correlated material.. Strongly correlated materials are a wide class of compounds that include insulators and electronic materials, and show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions, heavy fermion behavior, half-metallicity, and spin-charge ...
Mott showed that the probability of hopping between two states of spatial separation and energy separation W has the form: [] where α −1 is the attenuation length for a hydrogen-like localised wave-function. This assumes that hopping to a state with a higher energy is the rate limiting process.
Organic neuromorphic circuits made out of polymers, coated with an ion-rich gel to enable a material to carry an electric charge like real neurons, have been built into a robot, enabling it to learn sensorimotorically within the real world, rather than via simulations or virtually.
Flexible electronics: Research, development, prototypes, limited commercialization (e.g. Samsung Galaxy Fold) Flexible and/or foldable electronic devices, and flexible solar cells which are lightweight, can be rolled up for launch, and are easily deployable Nokia Morph, Flexible organic light-emitting diode