When.com Web Search

  1. Ads

    related to: a level graphs and transformations practice problems

Search results

  1. Results From The WOW.Com Content Network
  2. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms ...

  3. Steiner tree problem - Wikipedia

    en.wikipedia.org/wiki/Steiner_tree_problem

    Steiner tree problems in graphs are applied to various problems in research and industry, [7] including multicast routing [8] and bioinformatics. [9] A special case of this problem is when G is a complete graph, each vertex v ∈ V corresponds to a point in a metric space, and the edge weights w(e) for each e ∈ E correspond to distances in ...

  4. Subgraph isomorphism problem - Wikipedia

    en.wikipedia.org/wiki/Subgraph_isomorphism_problem

    Subgraph isomorphism is a generalization of the graph isomorphism problem, which asks whether G is isomorphic to H: the answer to the graph isomorphism problem is true if and only if G and H both have the same numbers of vertices and edges and the subgraph isomorphism problem for G and H is true. However the complexity-theoretic status of graph ...

  5. Graph isomorphism problem - Wikipedia

    en.wikipedia.org/wiki/Graph_isomorphism_problem

    Graphs are commonly used to encode structural information in many fields, including computer vision and pattern recognition, and graph matching, i.e., identification of similarities between graphs, is an important tools in these areas. In these areas graph isomorphism problem is known as the exact graph matching. [47]

  6. Clique problem - Wikipedia

    en.wikipedia.org/wiki/Clique_problem

    A special case of this method is the use of the modular product of graphs to reduce the problem of finding the maximum common induced subgraph of two graphs to the problem of finding a maximum clique in their product. [7] In automatic test pattern generation, finding cliques can help to bound the size of a test set. [8]

  7. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    Note: solving for ′ returns the resultant angle in the first quadrant (< <). To find , one must refer to the original Cartesian coordinate, determine the quadrant in which lies (for example, (3,−3) [Cartesian] lies in QIV), then use the following to solve for :

  8. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. An important unsolved problem in complexity theory is whether the graph isomorphism problem is in P, NP-complete, or NP-intermediate. The answer is not known, but it is believed that the problem is at least not NP-complete. [20]

  9. Graph isomorphism - Wikipedia

    en.wikipedia.org/wiki/Graph_isomorphism

    A set of graphs isomorphic to each other is called an isomorphism class of graphs. The question of whether graph isomorphism can be determined in polynomial time is a major unsolved problem in computer science, known as the graph isomorphism problem. [1] [2] The two graphs shown below are isomorphic, despite their different looking drawings.