Search results
Results From The WOW.Com Content Network
A granum (plural grana) is a stack of thylakoid discs. Chloroplasts can have from 10 to 100 grana. Chloroplasts can have from 10 to 100 grana. Grana are connected by stroma thylakoids, also called intergranal thylakoids or lamellae .
Within the stroma are grana (stacks of thylakoid), the sub-organelles where photosynthesis is started [2] before the chemical changes are completed in the stroma. [3] Photosynthesis occurs in two stages. In the first stage, light-dependent reactions capture the energy of light and use it to make the energy-storage molecules ATP and NADPH.
The electron transport chain of photosynthesis is often put in a diagram called the Z-scheme, because the redox diagram from P680 to P700 resembles the letter Z. [3] The final product of PSII is plastoquinol, a mobile electron carrier in the membrane. Plastoquinol transfers the electron from PSII to the proton pump, cytochrome b6f. The ultimate ...
Chloroplasts, containing thylakoids, visible in the cells of Ptychostomum capillare, a type of moss. A chloroplast (/ ˈ k l ɔːr ə ˌ p l æ s t,-p l ɑː s t /) [1] [2] is a type of organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells.
Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen. Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds (compounds containing carbon) like sugars, glycogen , cellulose and starches .
This center, below and to the left of the pair in the diagram, contains four manganese ions, a calcium ion, a chloride ion, and a tyrosine residue. Manganese is adept at these reactions because it is capable of existing in four oxidation states: Mn 2+, Mn 3+, Mn 4+ and Mn 5+. Manganese also forms strong bonds with oxygen-containing molecules ...
The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)
A lamella (pl.: lamellae) in biology refers to a thin layer, membrane or plate of tissue. [1] This is a very broad definition, and can refer to many different structures. Any thin layer of organic tissue can be called a lamella and there is a wide array of functions an individual layer can serve.