Search results
Results From The WOW.Com Content Network
Neutral organic compounds tend to be hydrophobic; that is, they are less soluble in water than inorganic solvents. Exceptions include organic compounds that contain ionizable groups as well as low molecular weight alcohols, amines, and carboxylic acids where hydrogen bonding occurs. Otherwise, organic compounds tend to dissolve in organic ...
(see Transition metal#Colored compounds). Organic compounds tend to be colored when there is extensive conjugation, causing the energy gap between the HOMO and LUMO to decrease, bringing the absorption band from the UV to the visible region. Similarly, color is due to the energy absorbed by the compound, when an electron transitions from the ...
Several of the CPK colors refer mnemonically to colors of the pure elements or notable compound. For example, hydrogen is a colorless gas, carbon as charcoal, graphite or coke is black, sulfur powder is yellow, chlorine is a greenish gas, bromine is a dark red liquid, iodine in ether is violet, amorphous phosphorus is red, rust is dark orange-red, etc.
The following outline is provided as an overview of and topical guide to organic chemistry: . Organic chemistry is the scientific study of the structure, properties, composition, reactions, and preparation (by synthesis or by other means) of carbon-based compounds, hydrocarbons, and their derivatives.
One major distinction is between natural and synthetic compounds. Organic compounds can also be classified or subdivided by the presence of heteroatoms, e.g., organometallic compounds, which feature bonds between carbon and a metal, and organophosphorus compounds, which feature bonds between carbon and a phosphorus. [citation needed]
Physical organic chemistry is the study of the relationship between structure and reactivity of organic molecules.More specifically, physical organic chemistry applies the experimental tools of physical chemistry to the study of the structure of organic molecules and provides a theoretical framework that interprets how structure influences both mechanisms and rates of organic reactions.
Factors governing organic reactions are essentially the same as that of any chemical reaction.Factors specific to organic reactions are those that determine the stability of reactants and products such as conjugation, hyperconjugation and aromaticity and the presence and stability of reactive intermediates such as free radicals, carbocations and carbanions.
Molecules, by definition, are most often held together with covalent bonds involving single, double, and/or triple bonds, where a "bond" is a shared pair of electrons (the other method of bonding between atoms is called ionic bonding and involves a positive cation and a negative anion).