Ads
related to: rectangular to oval duct calculator
Search results
Results From The WOW.Com Content Network
For a fully filled duct or pipe whose cross-section is a convex regular polygon, the hydraulic diameter is equivalent to the diameter of a circle inscribed within the wetted perimeter. This can be seen as follows: The N {\displaystyle N} -sided regular polygon is a union of N {\displaystyle N} triangles, each of height D / 2 {\displaystyle D/2 ...
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.
Process duct work conveys large volumes of hot, dusty air from processing equipment to mills, baghouses to other process equipment. Process duct work may be round or rectangular. Although round duct work costs more to fabricate than rectangular duct work, it requires fewer stiffeners and is favored in many applications over rectangular ductwork.
Cross sectional area of a trapezoidal open channel, red highlights wetted perimeter Change of wetted perimeter (blue) of trapezoidal canal as a function of angle ψ.. The wetted perimeter is the perimeter of the cross sectional area that is "wet". [1]
The viscous friction causes the flow properties to change along the duct. The frictional effect is modeled as a shear stress at the wall acting on the fluid with uniform properties over any cross section of the duct. For a flow with an upstream Mach number greater than 1.0 in a sufficiently long duct, deceleration occurs and the flow can become ...
When the system is designed with a main duct branching into many subsidiary branch ducts, fittings called take-offs allow a small portion of the flow in the main duct to be diverted into each branch duct. Take-offs may be fitted into round or rectangular openings cut into the wall of the main duct.
For channels of a given width, the hydraulic radius is greater for deeper channels. In wide rectangular channels, the hydraulic radius is approximated by the flow depth. The hydraulic radius is not half the hydraulic diameter as the name may suggest, but one quarter in the case of a full pipe. It is a function of the shape of the pipe, channel ...
The flow in manifolds is extensively encountered in many industrial processes when it is necessary to distribute a large fluid stream into several parallel streams, or to collect them into one discharge stream, such as in fuel cells, heat exchangers, radial flow reactors, hydronics, fire protection, and irrigation.