Search results
Results From The WOW.Com Content Network
Overloading occurs when two or more methods in one class have the same method name but different parameters. Overriding means having two methods with the same method name and parameters. Overloading is also referred to as function matching, and overriding as dynamic function mapping.
Multiple dispatch or multimethods is a feature of some programming languages in which a function or method can be dynamically dispatched based on the run-time (dynamic) type or, in the more general case, some other attribute of more than one of its arguments. [1]
The functions must have different type signatures, i.e. differ in the number or the types of their formal parameters (as in C++) or additionally in their return type (as in Ada). [9] Function overloading is usually associated with statically-typed programming languages that enforce type checking in function calls. An overloaded function is a ...
Since C++ does not support late binding, the virtual table in a C++ object cannot be modified at runtime, which limits the potential set of dispatch targets to a finite set chosen at compile time. Type overloading does not produce dynamic dispatch in C++ as the language considers the types of the message parameters part of the formal message name.
The C++ examples in this section demonstrate the principle of using composition and interfaces to achieve code reuse and polymorphism. Due to the C++ language not having a dedicated keyword to declare interfaces, the following C++ example uses inheritance from a pure abstract base class.
When overriding one method with another, the signatures of the two methods must be identical (and with same visibility). In C#, class methods, indexers, properties and events can all be overridden. Non-virtual or static methods cannot be overridden. The overridden base method must be virtual, abstract, or override.
A notable language in which this is a fairly common paradigm is C++. C# supports return type covariance as of version 9.0. [ 1 ] Covariant return types have been (partially) allowed in the Java language since the release of JDK5.0, [ 2 ] so the following example wouldn't compile on a previous release:
For example, consider variables a, b and c of some user-defined type, such as matrices: a + b * c. In a language that supports operator overloading, and with the usual assumption that the '*' operator has higher precedence than the '+' operator, this is a concise way of writing: Add(a, Multiply(b, c))